Talisker Mine, 1862-1872
Its history and heritage

G.J. Drew

Department of Mines and Energy, P.O. 151, Eastwood, S.A. 5063.

Silver-lead ores are widely distributed throughout the Mount Lofty and Flinders Ranges, but none of the deposits is large. Historically the Glen Osmond Mines are the most significant as the site of the first metalliferous mining in Australia, but Talisker was one of the three largest producers of silver-lead in a state whose mining history is dominated by copper.

The mine is located in a magnificent natural setting on Talisker Conservation Park, near Cape Jervis, southwest of Adelaide (Figure 1). It is exempt from the operations of the Mining Act and listed on the Register of State Heritage Items.

The mine and associated township of Silverton were dominated by Cornish influences during the period of principal activity between 1862 and 1872. Silverton, located on a ridge overlooking the mine, grew to a population of about 300 at its peak in 1870 and the area was very much another 'little Cornwall'.

The various mine ruins are significant as they illustrate typical mid-19th century mining and ore processing techniques. Virtually nothing remains of later short lived mining operations owing to their temporary nature.

History

An outcrop of ore assaying 68 per cent lead and 1.9 kg/t silver was discovered by John and Donald McLeod in early 1862 while searching for gold near Cape Jervis. The lode, about 0.6 m wide, was traced for about 50 m and was named 'The Talisker of Scotland' after a locality in their homeland on the Isle of Skye. This was soon shortened to Talisker.

According to the mineral lease regulations then in operation, applications for a 14-year lease of available mineral lands in blocks up to 80 acres had to be accompanied by a sketch plan and, within three months, a surveyed plan. John McLeod applied for mineral section 1554 on 22 May 1862, the date of commencement of the 14-year lease being 19 July 1862. The boundaries of mineral section 1554 became the boundary of the Talisker Mine.

Within a week of McLeod's application, mineral sections 1557 and 1558 were taken out to the north of the Talisker property. In July 1862, mineral sections 1610 and 1614 were taken on the eastern boundary of Talisker following the discovery of a lode in that area. These leases were taken out by J. Bull and W. Whittington and the Campbell Creek Silver Lead Mining Co. was formed to work them. Although the company erected a crusher and treatment plant in 1864, it was not successful and was reformed into the Cape Jervis Silver Lead Mining Co. in 1865. However, all work had ceased at the Campbell Creek Mine by 1868.

Mineral sections 1554, 1557, 1558, 1610, 1614 and 1611, which were acquired by the Talisker Mining Co. in 1863, remained as unallotted Crown land until 1976 when the area became a recreation reserve. The area was dedicated as Talisker Conservation Park in 1985.

The Talisker Mining Company was formed in July 1862 and by the end of the year consisted of about 15 shareholders holding 3000 £2 shares. Alfred Jenkin was appointed manager of the mine and departed for the mine by cutter from Glenelg 'with a full complement of Cornish miners and ample stores'. These pioneers of the mining operations of Talisker reached their destination on 17 July and immediately commenced the erection of tents and raising of stone from nearby for an office and store. By the end of the month, about 20 miners were busily at work on the lode, chiefly carrying out developmental or 'dead' work. However two men had raised about 20 tons of ore valued at about £500. The ore was initially broken into small pieces with hammers or buckers, hand picked, and bagged. The first shipment of 30 tons was despatched to England from Fishery Bay in November, 1862.

In early 1863, following the recommendation of Captain Jenkin, construction of a crushing and dressing works commenced at Fishery Bay, a site associated with early whaling activity in the area. The plant, consisting of a small 12 horsepower steam engine, boiler and crusher, was completed later in the year at a cost of about £1000. All ore was then hauled by bullock to the bay where it
Figure 1 Locality plan.

Plate 1 Talisker Mine from a photograph taken by Captain Price in 1870.
was crushed and dressed to a concentrate containing an average of about 25 per cent lead and 25 ounces of silver per ton. The bagged concentrate was then loaded in waist deep water onto barges for transfer to coastal schooners which conveyed the ore to Port Adelaide. All incoming goods were unloaded in a similar fashion as no jetty was ever constructed. Up to 1866, when smelting commenced at the mine, about 32,000 bags weighing 1600 tons were transported by this method.

In early 1864 Captain William Price took over the management of the mine, immediately increased the output, and recommended the erection of treatment works and a smelting furnace at the mine. To raise the necessary finance, the directors increased the amount payable on each company share from £2 to £10 in calls at their discretion, and increased the borrowing power of the Company from £3000 to £10,000. 9

Construction of the new works at the mine commenced in April 1865. Three masons were employed on the erection of the engine and crusher house, three labourers excavated the flue from the smelting works, and others burned lime and quarried soft sandstone at Sugarloaf Hill.10 The small engine and boiler from Fishery Bay were hauled to the mine, awaiting completion of the new enginehouse. The sinking of a main engine shaft and the construction of the associated pumping and winding enginehouse, ore dressing floors, calcining and smelting furnaces, were also undertaken during 1865. A new 40 horsepower horizontal steam engine (24-inch diameter) and two Cornish boilers were purchased in Kirkcaldy, Scotland, and by the end of 1865 nearly 50 men were employed at the mine.

Additional men were employed by early 1866 to raise and dress the ores that had accumulated during construction of the new works. Up to the commencement of smelting operations at the mine in early 1866, some 1600 tons of dressed ore, valued at approximately £16,000, were shipped to England. Subsequently all produce was in the form of silver-lead ingots, which weighed about 60 pounds each and gave a nett gain of 30 shillings a ton.

The new engine was officially started at a traditional Cornish opening ceremony in May 1866 when a number of the directors and several wives inspected the surface installations and parts of the underground workings with Captain Price.11 The new engine, with its 12-foot flywheel, operated a Cornish pump in the main shaft, which was able to pump 50,000 gallons a day. It was christened the 'Sanders Engine' by Mrs J.M. Tapley, wife of

Plate 2. Part of a panoramic view of the mine, taken about 1875 looking west. Immediately behind Main Shaft is the winding and pumping engine house with the boiler house containing two Cornish boilers. The water main rises above the shaft emptying into a wooden aqueduct (launder) which runs to a reservoir off picture to right. On the hill behind are the Captain's cottage and other mine buildings.
the Chairman of Directors. This ceremony was followed by a splendid luncheon in Mr Harvey's store and post office in the mining township of Silverton.

By early 1867 the main shaft had reached 42 fathoms in depth and the company, which already owed £10,000, decided to install Cornish stamps to enable treatment of 'drudge' or lower grade ore. These were erected adjacent to the eastern end of the crushing house and were operational by June, 1867.12

Galvanised iron sheds were erected over the dressing floors and smelting furnace in 1868 and the expectation of large profits between the 52 and 62 fathom levels resulted in 12 additional miners, some with families, being engaged by Captain Price.

The Talisker Mining Company was reconstituted in 1869 to raise sufficient capital to place them out of debt. The reconstituted company consisted of 10,000 shares of £4 each: 6,000 shares were issued in Adelaide to holders of the existing 3,000 shares paid up to £2 10 shillings, on payment of an additional 10 shillings; and 4,000 shares were offered in London.13 Smelting was suspended for much of 1869 due to a lack of ironstone flux, but during this period a circular brick kiln was erected to make firebricks from local clay. These were reportedly as good as imported firebricks and during the first six months 4,000 were produced and used to repair the furnaces and flues.14

The year 1870 proved to be a disappointing one for the company. All reserves above the 52 fathom level had been exhausted and the expected returns between the 52 and 62 fathom levels had not eventuated due to the unexpected hardness and irregularity of the ground and the large amount of development required. As a result smelting did not resume until later in the year. Some 35 miners were still employed, mostly on iturk, but although the reconstitution had raised £13,000, the company still had gross liabilities of £8,000.15

A similar situation prevailed in 1871 when the engine shaft was sunk to the 72 fathom level, where the Cornish pump had difficulty in coping with the volume of water encountered. The lode,

Plate 3 Ore treatment works in 1875. The main building is the two storey crusher house with an ore dressing shed attached to the front. On the right are the Cornish stamps for crushing lower grade ore. The engine house is attached to the crusher house and the protecting beam pumped water from a well which was transported by the wooden aqueduct to the reservoirs behind the plant. On the left is the calcining furnace with its twin feeding hoppers and the smelting furnace covered by an open shed.
Figure 2 Site plan.
when intersected at this level in early 1872, was again lower in grade and quantity than had been expected and when the mortgagees foreclosed in June 1872 mining operations were suspended. The 50 employees thrown out of work were owed two months’ wages but Mr W.W. Hughes, owner of the Moonta Mine, donated £50 and offered immediate employment and travelling expenses to Moonta for all miners. Eighteen men accepted the offer. Captain Price, who had managed the mine since 1864, became manager of the New Cornwall Mine near Kadina in the 1870s and of the Aclare Mine near Callington between 1882 and 1885. The company was wound up at an extraordinary general meeting in July 1872.

Three main factors had precipitated the closure of the mine: the increased expense of pumping and mining at depth, the lower ore grades, and the lack of finance. The total proceeds of ore and bullion amounted to nearly £46,000 and more than £40,000 was raised by the company, but no dividend was ever paid, although it was often hinted that one was “just around the corner”. Unfortunately the company commenced operations with a bank overdraft and paid more than £10,000 in interest.

In 1888 the following plant was listed by Captain Price:

- Engine and boiler house built of stone and roofed with galvanised iron.
- Large horizontal engine, about 40 horsepower, and two Cornish boilers.
- Crushing house, built of stone and covered with galvanised iron, with engine-house attached and engine of 12 horsepower with eight head of stamps. Ore dressing shed attached to the building covered with galvanised iron.
- Smelting shed, covered with galvanised iron, covering a reverberatory furnace and ore floor, etc.
- One large calcining furnace with condensing chamber, etc.
- Brick kiln for making bricks used on the mine built with sandstone.
- Blacksmith’s shop (old) with two pairs of bellows.
- Manager’s house of five rooms built with wood.
- Store, built with wood and covered with shingles.
- One steam whim and winding gear complete.
- Three horse whins.
- Seventy-five fathoms of pumps (9-inch) with pumping gear, complete.

Plate 4 Main Shaft and the pumping and winding house c. 1900. The two Cornish boilers are still in place. A winding chain runs between engine house and shaft.
A panoramic view of the mine, taken by E. Sweet about 1875, shows the above plant with the exception of the brick kiln (Plates 2 and 3).

The mine was re-opened in 1890 following favourable reports by Mr Rosewarne (the Inspector of Mines), Captain Price, and Captain Tresize from Broken Hill who had previously worked in the mine. A new adit was driven 430 m northwards from Campbell Creek towards the workings. Arsenic was recovered from small amounts of ore and the old smelting flue but operations ceased in 1891.

Interest in Talisker revived in 1917 due to the demand for arsenic during the First World War and a syndicate was formed in Adelaide to work the mine for arsenic.

In 1919 a 50 horsepower steam traction engine was installed near Main Shaft to drive new pumping equipment, which had replaced the old Cornish pumps (Plate 6). Between 1917 and 1920 about 600 tons of arsenic ore was mined mainly from the dry portion of the mine above the 22 fathom level. The syndicate was re-formed into the Talisker Silver Lead Mining Co. in 1920 and a new poppet head erected over Main Shaft. A small horizontal winding engine was purchased and a boiler installed in the old boiler house to make use of the existing flue. The erection of the steam plant was not completed until 1925 when the Department of Mines dewatered and inspected the mine for its arsenic potential. However the only ore body exposed in the working was below the 62 fathom level.

Mine geology

Rock types in the mine area, which host the silver-lead mineralisation, are metamorphic rocks of the Cambrian Kankmantoo Group. They include phyllite, quartzite and sandstone and generally strike northeast and dip at about 60° southeast on the limb of a regional anticline. Most are weathered near the surface to a mustard colour but where fresh are a grey colour due to the presence of black biotite.

Four or five lodes were known in the mine area, but only the Talisker lode was worked. The lode or ore horizon is a fault zone which trends north-south, dips to the east at about 70°, and contains a number of discontinuous ore shoots plunging to the south at 50°. The width of the lode varied from 15 cm to 6.7 m.

In the oxidised zone, near the surface, the ore consisted of arsenates, phosphates, and carbonates of lead and silver containing up to 195 ounces of silver per ton. Below a depth of about 18 m the ore was a fine grained dense greyish sulphide, mainly galena (lead sulphide containing silver) and

Plate 5 Eight-head Cornish stamps, pictured in 1917, used for finer crashing of low grade ore before concentration.
Plate 6 Main Shaft and the ore treatment plant looking north in 1917. The smelting furnace has been demolished but the calcining furnace with its two feed hoppers is still intact.

Plate 7 Main Shaft c. 1924 showing the poppet head erected in 1920 when the old Cornish pumps were replaced. Lengths of cast iron rising main, valve boxes and wooden pump rods lie scattered in the foreground.
arsenopyrite (iron arsenic sulphide), in a matrix of quartz, containing up to 39 ounces of silver per ton. A feature of the lode was the occurrence of large pods or ‘bonanzas’ of ore which, when mined out, left large excavations known as ‘ballrooms’.

Mining methods

The Talisker lode was worked principally by Cornish miners under the management of a mining captain using the same principles followed in Cornwall for several centuries. Four principal shafts were sunk along the lode, levels driven at regular intervals of about 10 fathoms (18 m) and connected by winzes. A drainage adit and cross cut was put in across the direction of the main workings (Figure 3). The maximum longitudinal development was at the 22 fathom level and extended for 230 m along the plane of the lode. The principal shafts were Main or Engine (132 m), Tapley (113 m), Price (60 m), and Ghyde (78 m) Shafts. Tapley, Price and Ghyde Shafts were inclined to the dip of the lode and were worked by horse whins. The vertical Main Shaft, commenced in 1865, was worked by the horizontal steam engine which kept the mine dry below the 22 fathom level.

Employment in the mine was according to the traditional Cornish tribute and tutwork systems, which enabled the miners to work for themselves. Miners who sank the shafts and drove the levels were known as tutworkers and were paid by the amount of ground mined and not by its value. This varied from £14 to £15 per fathom for sinking and about £4 10 shillings per fathom for driving. Following the tutworkers were the tributers who worked the lodes (a process known as sloping) and were paid a proportion of the value of the ore mined. This rate was quite variable depending on the richness of the ore, one tribute contract in 1862 being £3 15 shillings per ton on 40 per cent ore. Up to 35 miners were employed but, such was the importance of developing the mine and establishing ore reserves, only a handful of these were employed on tribute.

Other men were employed as labourers, engine drivers, blacksmiths, stonemasons, ore dressers, smelters, woodcutters and teamsters.

During the period the mine was working, the surrounding hillsides were denuded of trees to supply the boilers with fuel. The timber used in the mine workings was obtained 5 km away at Sawpit Gully. Gum and shewok were cut into 1.2 m lengths by hand with pit saws.

The peak of production was the period 1866-1869 when more than 500 tons of bullion were produced.

Ore treatment

The ore processing techniques at Talisker were typical of those employed on small scale mines during the mid-19th century. These techniques had generally been developed in Cornwall.

Initially all treatment was done by hand, the ore being broken into small pieces (‘ragged’) and freed from impurities mixed with it.

In 1863 a crushing and dressing (concentrating) plant was constructed at Fishery Bay and subsequently relocated to the mine in 1865 (Plate 3). The lode was initially broken by hand and sorted into high (‘prill’) and low grade ore (‘dragee’ and waste (‘atle’). Low grade ore was processed through four stages: crushing, dressing, calcining, and smelting.

Crushing (Figure 4)

Ore was reduced to a coarse sand for jiggling by a pair of solid cast iron Cornish rolls about 40 cm in diameter, one of which is still on the mine (Plate 11). These rolls, placed horizontally and nearly in contact, revolved towards each other, the power being provided to one of the rolls by the 12 horsepower steam engine. The second roll was geared off the powered one and worked in moveable bearings, compressed by weighted levers. This was to allow any unyielding piece to pass through. Ore was fed into the rolls from a hopper bin set into the floor of the crusher house. The crushed material dropped into a rotating cylindrical sieve, the fines passing through, and the oversized discharged into the buckets of a 12-foot diameter roll (or lifting) wheel, which emptied its load back into the hopper on the first floor for recrushing.

Finer crushing of lower grade ore was achieved with a set of eight heads of Cornish stamps (Plate 5) erected in 1867. The stamps were powered by the same drive shaft as the crushing rolls. Each stamp weighed about 550 pounds and had a fall of 12 inches.

Table 1 Talisker Mine production.

<table>
<thead>
<tr>
<th>Period</th>
<th>Amount (tons)</th>
<th>Value (£)</th>
<th>Lead (tons)</th>
<th>Silver (ounces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1862-1866</td>
<td>1,600 (dressed ore)</td>
<td>16,000</td>
<td>400</td>
<td>40,000</td>
</tr>
<tr>
<td>1866-1872</td>
<td>889 (bullion)</td>
<td>29,885</td>
<td>670</td>
<td>70,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>45,885</td>
<td>1,070</td>
<td>110,000</td>
<td></td>
</tr>
</tbody>
</table>
Dressing

Crushed low grade ore was delivered to the dressing shed (Plate 3) through an opening in the front of the crushing house. There the ore was jigged to separate heavier sulphides from lighter waste. It is not known whether these were hand operated or mechanical jigs, although the former seems more likely. The residue (slimes) from the jigs would have been subjected to further concentration, possibly by way of a baddle, but again there is no evidence of this. Dressing produced various concentrates ranging from 25 to 50 per cent lead.
Calcining (Figure 5)

Crushed high grade and dressed ore was roasted in a calcining furnace to remove sulphur and arsenic prior to smelting. A condensing chamber collected the sulphur and arsenic.

The furnace was a reverberatory type, the ore being placed on a hearth which was separated from the fireplace by a bridge of fire bricks. Heat passed over the bridge and reverberated along the roof of the furnace, producing the required temperature. The furnace was provided with two doors on each side for stirring the ore and removing it when

Figure 5 Calcining furnace, c. 1865.
calcined. The ore was fed in through two hoppers on the top of the furnace and distributed evenly over the hearth. The process lasted about 12 hours, the ore being frequently stirred to prevent fusion and to help with removal of sulphur. The charge was then drawn out through holes in the bottom of the calciner and, having fallen under the arch of the furnace, remained there until cool enough to be removed.

Smelting

A mixture of roughly equal amounts of calcined ore, slag and regulus, weighing about 1.5 tons was combined with iron oxide as flux and placed in the smelting furnace for about 9 hours. This was a reverberatory furnace, similar to the calciner, but the temperature was sufficient for the mixture to become molten. When tapping the charge, slag and regulus were first poured off, the regulus being resmelted. The lead bullion was run off into an iron pot and ladled into ingots, each weighing about 60 pounds. The charge of 1.5 tons produced between 450 and 900 pounds of bullion which assayed on average about 75 per cent lead and 80 ounces of silver per ton. Smelting costs were £2 10 shillings for each ton of bullion which was valued at about £3 3s in England.

Existing remains

A considerable amount of physical evidence of the mine has survived. These elements, which are indicated on Figure 2, include the brick kiln, crusher house (with engine and boiler house), calcining furnace, boiler house (for the pumping engine), mine workings, underground flue system, manager's house, mine office, miners' cottages, engine reservoir and stone quarries. Hence, evidence of virtually every aspect of the mine operations has survived. By far the most significant relics are the brick kiln, crusher house, and calcining furnace.

Brick kiln (Plate 8)

Constructed of stone in 1869, this circular structure remains largely intact, although the original brick arch above the doorway has collapsed along with the fire place on the northern side. Only one other similar structure survives in South Australia at the Bolla Bollana smelter, near Arkaroola.

Crusher house (Plate 9)

The most obvious structure on the site is the remains of the Cornish crusher house built of local soft sandstone. It is typical of many similar structures that were built on mines throughout South Australia between 1850 and 1880. Although the other three similar extant structures in the State are in better condition, the Talisker house contains some structural timbers (Plate 10) which has enabled details of the machinery layout to be established. One of the original Cornish crusher rolls remains on the mine site (Plate 11).

The engine compartment, which contained a small 12 horsepower engine, is located on the western side of the crusher house. No details of this engine are known, but it was probably a small framed beam engine, the beam operating a back beam mounted on the front wall of the engine house. This back beam operated a pump in a well, the water being run along a launder into the reservoir (Plate 3).

Adjacent to the engine compartment is the boiler installed in 1870. This boiler is an egg-ended type, the fire being placed underneath and a flue enveloping it (Plate 12). It is of some significance as possibly the only egg-ended boiler in Australia still in its original setting.

Calcining furnace (Plate 13)

The calcining furnace, constructed of sandstone and locally made firebrick, is in a somewhat fragile condition. Its arched roof has disappeared but the fireplace, furnace bottom and arches are still clearly evident. Several buck stays, which helped tie the structure together, are still present and the locations of the remainder are obvious. The calciner is surrounded by a slate ore floor and an original iron hopper survives. Only one other pre-1900 reverberatory furnace is known to survive in South Australia, at the Aclare Mine near Callington.

Boiler house (Plate 14)

Two Cornish boilers supplied steam to the 40 horsepower horizontal pumping and winding engine (Plate 4). The boiler house walls and the connection with the underground flue system running up the hill are clearly evident. The engine was housed in an adjacent stone and iron building but no evidence of this has survived. The engine operated a Cornish pump in the engine shaft by flatrods, 9 feet in length. Part of the pump mounting adjacent to the shaft still remains (Plate 15). The pump could raise 50000 gallons per day through a 9-inch water main. A length of original pump rod lies next to the shaft, complete with iron strapping plates (Plate 17). The masonry mounting block for the 1920s horizontal engine can also be seen near Main Shaft.

Mine workings

The four principal shafts along the line of the lode, Main, Taplley, Price and Glyde Shafts were securely fenced by the Department of Environment and Planning in 1978. A large crater has developed around Main Shaft due to collapse of
the collar but the other shafts are in near original condition. The mullock dumps remain. Main Shaft
dump being the most obvious, stretching across
the gully.

Sites for the location of horse whins are evident
at Price and Glyde Shafts, particularly the former
where the circular path trod by the horse is clearly
visible.

Water still flows from the drainage adit, located
almost directly below Price Shaft. Collapse of the
portal has partially blocked the entrance but access
to the 40 m level is still possible. The 40 m level
is accessible southwards to Price Shaft and for a
short distance northwards. The adit contains origi-
nal timber tram rails.

Underground flue system (Plate 18)

Flues from the two boiler houses and the calc-
nining and smelting furnaces converged into one
underground flue which ran westerly to the top of
the hill overlooking the mine. Parts of this system,
with its characteristic stone lining and arched roof,
can be identified at several places where collapse
has occurred. Several sections of the flue are in
good condition. In the 1920s part of this flue was
re-used for a new steam plant and a steel chimney
added. The concrete base for this chimney remains
about half way up the hill (Plate 19).

Manager’s house (Plate 20)

The walls of the house, constructed for Captain
W.H. Price, survive although in poor condition.

Mine office and store (Plate 21)

Foundations of the office and store, indicated
on the 1875 photograph (Plate 2), have been iden-
tified south of the manager’s house. These were
constructed of timber with shingle roof and stone
fire places.

Miner’s cottages

These were generally built of wattle and daub
or timber slab with thatched roof. Sites of a num-
ber of cottages have been identified scattered
throughout the mine area, evidence being princip-
ally piles of stone marking chimneys (Plate 22).

Reservoir

The reservoir, behind the crusher house, can still
be identified although now nearly completely silted
up.

Stone quarries

Three small quarries in soft weathered sand-
stone have been identified on the hill to the north-
east of the crusher house.

Conclusion

The Talisker Mine has a well recorded and inter-
esting history and illustrates typical mid-19th cen-
tury methods of mining and ore treatment.

An interpretive walking trail through the mine
area, designed and built by the Department of
Mines and Energy, was opened in May 1986 to
commemorate the opening of the treatment plant
120 years earlier.

This paper has described the various heritage
items of which the brick kiln, crusher house, and
caliner are by far the most significant. It is
recommended that these receive conservation work
as a matter of some urgency.

Acknowledgement

Jack Connell, Department of Environment and
Planning, for discussions and site work relating to
the crusher house internal layout.

NOTES

1 Register, 24 May 1862
2 S.A.P.P, 162, 1862
3 ibid 97, 1863
4 Observer, 23 September 1865
5 ibid, 2 August 1862
6 ibid, 8 November 1862
7 ibid, 14 February 1863
8 ibid, 25 March 1865
9 ibid, 18 May 1866
10 ibid, 18 May 1866
11 ibid, 18 May 1866
12 Southern Argus, 15 June 1867
13 Observer, 30 December 1868
14 ibid, 14 August 1869
15 ibid, 2 July 1870
16 ibid, 29 June 1872
17 A. Abrahams, Liquidators report, August 1875
18 Report of the Talisker Mine, July 1888, by W.H.
Price. Copy held by Department of Mines and Energy
19 Advertiser, April 8 1919
20 Mining Review 43, 1925. S. Aust. Dept Mines and
Energy, Adelaide
Plate 8 Brick Kiln.

Plate 9 Crusher house, with engine house and boiler (left).
Plate 10 Interior of two storey crusher house.

Plate 11 Cast iron crusher roll.
Plate 12 Egg-ended boiler, still in place.

Plate 13 Calcining furnace showing arches which allowed access to calcined ore.
Plate 14 Boiler house near Main Shaft: this originally housed two Cornish boilers which supplied steam to the pumping and winding engine.

Plate 15 Main Shaft in 1977; this has subsequently been fenced off.
Plate 16 Looking south from Main Shaft along the lode.
Plate 17 Part of original pump rod.

Plate 18 Smelter flue.
Plate 19 Concrete foundation for steel chimney (1920s) on original flue.

Plate 20 Manager's house.
Plate 21 Mine office and store.

Plate 22 Remains of miner's cottage.